Tuesday, 18 December 2018

Assessing the promise of gallium oxide as an ultrawide bandgap semiconductor

In microelectronic devices, the bandgap is a major factor determining the electrical conductivity of the underlying materials, and a more recent class of semiconductors with ultrawide bandgaps are capable of operating at much higher temperatures and powers than conventional small-bandgap silicon-based chips. Researchers now provide a detailed perspective on the properties, capabilities, current limitations and future developments for one of the most promising UWB compounds, gallium oxide.

No comments:

Post a Comment

'Cold' manufacturing approach to make next-gen batteries

Lithium-ion batteries have been a staple in device manufacturing for years, but the liquid electrolytes they rely on to function are quite u...