Friday, 25 January 2019
Engineers develop novel strategy for designing tiny semiconductor particles for wide-ranging applications
NUS Engineers have developed a cost-effective and scalable strategy for designing tiny semiconductor particles known as transition metal dichalcogenide quantum dots (TMD QDs) which can potentially generate cancer-killing properties. The team is also looking to optimise TMD QDs for applications such as the next generation TV and electronic device screens, advanced electronics components and even solar cells.
Subscribe to:
Post Comments (Atom)
How 'clean' does a quantum computing test facility need to be?
How to keep stray radiation from 'shorting' superconducting qubits; a pair of studies shows where ionizing radiation is lurking and ...
-
In this project, we will learn about the MCP2515 CAN Controller Module, how to interface the MCP2515 CAN Bus Controller with Arduino and fin...
-
I was first introduced to logic gates when I was around 14 years old. I had heard that computers consisted of ones and zeroes. But I didn’t...
-
Do you need a MOSFET gate resistor? What value should it be? And should it go before or after the pulldown resistor? If you’re a bit impati...
No comments:
Post a Comment