Wednesday, 22 July 2020

Through the nanoscale looking glass -- determining boson peak frequency in ultra-thin alumina

There's more to glass than meets the eye. Glasses, which are disordered materials with no long-range chemical order, have some mysterious properties that have remained enigmatic for several decades. Amongst these are the anomalous vibrational states that contribute to the heat capacity at low temperature. Early researchers established that these states obey Bose-Einstein statistics, and the name stuck, so today this feature is known as the boson peak. It is generally accepted that these vibrational states arise from the decay of bosonic phonon-like quasiparticles in the strong disordered glass environment.

No comments:

Post a Comment

Tiny, wireless antennas use light to monitor cellular communication

Researchers developed a biosensing technique that eliminates the need for wires. Instead, tiny, wireless antennas use light to detect minute...