Wednesday, 22 July 2020
Through the nanoscale looking glass -- determining boson peak frequency in ultra-thin alumina
There's more to glass than meets the eye. Glasses, which are disordered materials with no long-range chemical order, have some mysterious properties that have remained enigmatic for several decades. Amongst these are the anomalous vibrational states that contribute to the heat capacity at low temperature. Early researchers established that these states obey Bose-Einstein statistics, and the name stuck, so today this feature is known as the boson peak. It is generally accepted that these vibrational states arise from the decay of bosonic phonon-like quasiparticles in the strong disordered glass environment.
Subscribe to:
Post Comments (Atom)
Smart textiles and surfaces: How lightweight elastomer films are bringing tech to life
Clothes that can mimic the feeling of being touched, touch displays that provide haptic feedback to users, or even ultralight loudspeakers. ...
-
In this project, we will learn about the MCP2515 CAN Controller Module, how to interface the MCP2515 CAN Bus Controller with Arduino and fin...
-
Interfacing DC motor to the microcontroller is a very important concept in many industrial and robotic applications. By interfacing DC motor...
-
Smart LCD with Automatic Brightness Adjusting Using Arduino and LDR Sensor Here is a simple Arduino project that focuses on adjusting the b...
No comments:
Post a Comment