Friday, 24 April 2020
Two steps closer to flexible, powerful, fast bioelectronic devices
Researchers have designed biocompatible ion-driven soft transistors that can perform real-time neurologically relevant computation and a mixed-conducting particulate composite that allows creation of electronic components out of a single material. These have promise for bioelectronic devices that are fast, sensitive, biocompatible, soft, and flexible, with long-term stability in physiological environments such as the human body. In particular, they could facilitate diagnosis and monitoring of neurological disease.
Subscribe to:
Post Comments (Atom)
Harnessing electromagnetic waves and quantum materials to improve wireless communication technologies
A team of researchers has developed innovative methods to enhance frequency conversion of terahertz (THz) waves in graphene-based structures...
-
In this project, we will learn about the MCP2515 CAN Controller Module, how to interface the MCP2515 CAN Bus Controller with Arduino and fin...
-
Interfacing DC motor to the microcontroller is a very important concept in many industrial and robotic applications. By interfacing DC motor...
-
Smart LCD with Automatic Brightness Adjusting Using Arduino and LDR Sensor Here is a simple Arduino project that focuses on adjusting the b...
No comments:
Post a Comment